DOI: 10.46765/2675-374X.2023V4N1P174

CONSENSUS UPDATE

HEMOTHERAPY SUPPORT IN HSCT

Karen Lima Prata,^{1,2} Andrea Tiemi Kondo,³ Aline Miranda de Souza,⁴ Sanny Marcele da Costa Lira,⁴ Andreza Alice Feitosa Ribeiro⁵

- 1 Centro de Tecidos Biológicos de Minas Gerais Fundação Hemominas.
- 2 Agência Transfusional Hospital das Clínicas da Universidade Federal de Minas Gerais/EBSERH.
- 3 Departamento de Hemoterapia e Terapia Celular Hospital Israelita Albert Einstein
- 4 Grupo GSH.
- 5 Unidade de Transplante de Medula Óssea do Hospital Israelita Albert Einstein.

Corresponding author: Karen Lima Prata (karenlprata@gmail.com)

Received: 16 Oct 2022 • Revised: 17 Oct 2022 • Accepted: 13 Jan 2023.

ABSTRACT

Hemotherapy support is essential for Hematopoietic Stem Cell Transplantation (HSCT). In this article, we highlight the main points published in the 2020 SBTMO consensus and provide a brief update on the topic.

KEY POINTS

MOBILIZATION AND COLLECTION OF PERIPHERAL HEMATOPOIETIC PROGENITOR CELL (HPC)

Standard mobilization: filgrastim (G-CSF) 10 to $20\mu g/kg/day$ in one or two administrations for 5 days, with the first collection on day 5.⁽¹⁾

Alternative mobilization (chemotherapy and G-CSF association): vinorelbine 35 mg/m²; cyclophosphamide (Cy) 2 to 4 grams/m² or etoposide 375 mg.⁽¹⁾

Rescue mobilization: plerixafor (0.24 mg/kg, 9 to 12 hours before collection) with G-CSF or chemotherapy + G-CSF.⁽¹⁾

CD34⁺ **cells minimum dose:** 2 x 10⁶/kg per transplant (target dose of 4 to 5 x 10⁶/kg).⁽¹⁾

High volume apheresis (total blood volume processed more than 4 times patient's blood volume) increases the CD34+ collection. (1)

Pediatric patients with less than 20 kg: prime the apheresis kit with red blood cells and process at least three blood volume.⁽¹⁾

BONE MARROW HARVEST

Collection target: 10-15 ml/kg of recipient, not exceeding 20 ml/kg of donor.

Recommended cell dose: $\geq 3x10^8$ /kg of total nucleated cell (TNC) with minimum of 2 x 10^8 TCN/kg.⁽¹⁾

PROCESSING AND CRYOPRESERVATION OF HPC-A

Cryoprotective solutions: Dimethyl sulfoxide (DMSO) 10% or DMSO 5% + hydroxylamine (HES) 6%, both associated with a protein source. (1)

Final nucleated cell (NC) concentration: $100 \text{ to } 500 \times 10^6 \text{ NC/mL}.$

Freezing ideal rate: temperature reduction from 1 to 2° C per minute in a programmed freezing equipment or mechanical freezer.⁽¹⁾

Storage: vapor phase or liquid nitrogen tank or mechanical freezer (-80 or -150° C).⁽¹⁾

TRANSPORT, THAWING AND INFUSION OF HPC

Transport of fresh products kept the temperature between 2 and 24°C (preferably close to 4°C).⁽¹⁾

____ JBMTCT. 2023 4(1) ______ **62** ____

Transport of cryopreserved products: if the cells were stored in -80° C mechanical freezer kept the temperature at or below - 65°C (dry ice); if the cells were stored in temperature below - 150°C, kept the temperature below -130°C.⁽¹⁾

Premedication: hydration, diphenhydramine, dipyrone and/or hydrocortisone to prevent allergic, febrile types and/or DMSO-related reactions.⁽¹⁾

Maximum DMSO volume: 1ml DMSO/Kg patient weight/day to reduce risk of adverse event. In lower weight pediatric patients consider removal of DMSO.⁽¹⁾

Infusion: Do not use transfusion set device with leukocytes filter. Rate: 10 mL/minute for thawed products and 6mL/Kg of patient weight/hour for fresh products (maximum 4h).⁽¹⁾

TRANSFUSION SUPPORT

Red blood cells (RBC), platelet and granulocyte concentrates intended for HSCT patients should be leukoreduced and irradiated.⁽¹⁾

Platelet refractoriness: relative common in HSCT. Causes: non-immune (> 80%) or immune (< 20%). Calculation of platelet increment is important to confirm the platelet refractoriness diagnosis.⁽¹⁾

Granulocyte transfusion is used to prevent (patients with neutropenia or neutrophil function disorders) or treat infections in severe neutropenia (granulocytes $< 500/\mu$ L) patients. There are no randomized studies that prove its clinical efficacy.⁽¹⁾

ALLOGENIC BMT WITH ABO INCOMPATIBILITY

Major or bidirectional ABO incompatibility: RBC removal if bone marrow. Measures to reduce the anti-donor circulation isohemagglutinins (donor ABO plasma infusion or therapeutic plasmapheresis) if isohemaglutinin anti-donor ≥ 1:32.⁽¹⁾

Minor ABO incompatibility: Plasma removal if bone marrow or if HPC-A, isohemaglutinin anti-receptor $\geq 1:256.$ ⁽¹⁾

ABO blood component support: summarized in table 1.

DONOR LYMPHOCYTE INFUSION (DLI)

Medical evaluation of the donor is mandatory, and the eligibility criteria are the same used for blood donors.⁽¹⁾

There is no need for any medication to prepare the donor for the collection.⁽¹⁾

Lymphocytes can be obtained from the buffy coat of whole blood, however, the collection through apheresis equipment can offer a greater amount of CD3+ cells and is the most used.⁽¹⁾

Each apheresis session should process 2 to 2.5 total blood volumes and if the number of cells needed is not obtained, a second procedure can be performed. There is a linear correlation between the number of CD3+ cells collected and the processed blood volume up to 12L.^(1, 3)

Dose scheme depends on the type of BMT and disease, but a stagged regimen is recommended.⁽¹⁾

ANTI-HLA DONOR DESENSITIZATION

The presence of donor-specific anti-HLA antibody with mean fluorescence intensity (MFI) above 2000 is indication of desensitization protocols.⁽¹⁾

INDICATION OF PHLEBOTOMY IN IRON OVERLOAD POS BMT

Phlebotomy is a therapeutic option to drug treatment in patients with sustained hematopoiesis to reduce liver damage and irreversible tissue damage. It is indicated in cases with ferritin above 2500µg/L and transferrin saturation close to 100%.⁽¹⁾

During the revision of the chapter published in the SBTMO consensus in 2020⁽¹⁾, we noticed the lack of a guidance on choosing the blood component to be transfused in the recipient undergoing transplantation with ABO incompatibility, which is now summarized in Table 1.⁽⁴⁾

There were few updates on the literature. We emphasize the safe nucleated cells concentration for cryopreservation, which can be up to 500,000 cells/mL after the cryoprotective solution addition.⁽²⁾

On the other hand, there have been many advances in Cell Therapy. SBTMO has published a technical manual on the topic that contains specific chapters of lymphocytes collection of by apheresis, ⁽⁵⁾ cryopreservation and transportation of mononuclear cells, ⁽⁶⁾ thawing and infusion of CAR-T cells, ⁽⁷⁾ among others.

At the national level, the current health legislation was updated.⁽⁸⁾.

___ JBMTCT. 2023 4(1) ________ **63** ____

TABLE 1. Recommendation for post-transplantation transfusion support in ABO-incompatible HPC recipients.(4)

			Fase I	Fase II				Fase III
Receptor	Donor	Incompatibility type	All blood components	RBC concentrate	Platelet concentrate		Plasma	All blood components
					1st choice	Other choice		55
А	0	Minor	А	0	А	AB; B; O	A; AB	0
В	0	Minor	В	0	В	AB; A; O	B; AB	0
AB	0	Minor	AB	0	AB	A; B; O	AB	0
AB	Α	Minor	AB	А	AB	A; B; O	AB	А
AB	В	Minor	AB	В	AB	B; A; O	AB	В
0	Α	Major	0	0	А	AB; B; O	A; AB	А
0	В	Major	0	0	В	AB; A; O	B; AB	В
0	AB	Major	0	0	AB	A; B;O	AB	AB
Α	AB	Major	А	Α	AB	A; B; O	AB	AB
В	AB	Major	В	В	AB	B; A; O	AB	AB
Α	В	Bidirecional	А	0	AB	A; B; O	AB	В
В	Α	Bidirecional	В	0	AB	B; A; O	AB	А

Phase I: from the beginning of patient preparation to the beginning of conditioning; Phase II: from the beginning of conditioning until the direct antiglobulin test becomes negative and the direct typing of the patient becomes the same as the donor; Phase III: from the moment when the direct and reverse typing of the patient is the same as the donor.

REFERENCES

- 1. Kondo AT, Prata KL, Souza AM, et al. Transfusional support in HSCT; JBMTCT. 2021;2(1):235-44.
- 2. Belisario AR, Costa AP, Luz JR, et al. Influence of laboratory procedures on postthawing cell viability and hematopoietic engraftment after autologous peripheral blood stem cell transplantation. Transfusion. 2021;61(4):1202-14.
- 3. Sato H, Shiobara S, Yasue S, et al. Lymphocyte collection for donor leucocyte infusion from normal donors: estimation of the minimum processed blood volume and safety of the procedure. Vox Sang. 2001;81(2):124-7.
- 4. O'Donghaile D, Kelley W, Klein HG, et al. Recommendations for transfusion in ABO-incompatible hematopoietic stem cell transplantation. Transfusion. 2012;52(2):456-8.

- Souza AM. Collection of lymphocytes by apheresis. JBMTCT. 2022;3(1):26-34.
- 6. Prata KL, Kondo AT. Peripheral blood mononuclear cells cryopreservation and transportation: PBMC cryopreservation and transportation.JB-MTCT. 2022;3(1):45-56.
- 7. Kondo AT, Kerbauy LN, Alvarez KC, et al. Thawing and infusion of CAR-T cell products. JBMTCT. 2022;3(1):63-9.
- 8. Anvisa. Resolução RDC no 508, de 27 de maio de 2021. Dispõe sobre as boas práticas em células humanas para uso terapêutico e pesquisa clínica e dá outras providências [Internet]. Brasília; 2021 [cited 2023 Jan 23]. Available from: https://www.in.gov.br/en/web/dou/-/resolucao-rdc-n-508-de-27-de-maio-de-2021-323013606

____ JBMTCT. 2023 4(1) _______ **64** ____